Беру кредит. 13 процентов от числа калькулятор. Примеры школьных заданий

Калькулятор процентов предназначен для расчёта основных математических задач связанных с процентами. В частности позволяет:

  1. Вычислить процент от числа.
  2. Определить, сколько процентов составляет одно число от другого.
  3. Прибавить или вычесть процент от числа.
  4. Найти число, зная его определённый процент.
  5. Посчитать, на сколько процентов одно число больше другого.

Результат может быть округлён до необходимого знака после запятой.

Сколько составляет
% от числа
Сбросить

Сколько % составляет число
от числа
Сбросить

От какой величины число
составляет
%
Сбросить

На сколько % число
больше/меньше числа
Сбросить

Прибавить
% к числу
Сбросить

Вычесть
% из числа
Сбросить

Округлять результат до
1 2 3 4 5 6 7 8 9 знака после запятой

Формулы расчёта процентов

  1. Какое число соответствует 24% от числа 286?
    Определяем 1% от числа 286: 286 / 100 = 2.86.
    Рассчитываем 24%: 24 · 2.86 = 68.64.
    Ответ: 68.64%.
    Формула вычисления x% от числа y: x · y / 100.
  2. Сколько процентов составляет число 36 от 450?
    Определяем коэффициент зависимости: 36 / 450 = 0.08.
    Переводим результат в проценты: 0.08 · 100 = 8%.
    Ответ: 8%.
    Формула для определения, какой процент составляет число x от y: x · 100 / y.
  3. От какой величины число 8 составляет 32%?
    Определяем 1% значения: 8 / 32 = 0.25.
    Вычисляем 100% величины: 0.25 · 100 = 25.
    Ответ: 25.
    Формула для определения числа, если x составляет его y %: x · 100 / y.
  4. На сколько процентов число 128 больше 104?
    Определяем разницу значений: 128 — 104 = 24.
    Находим процент от числа: 24 / 104 = 0.23.
    Переводим результат в проценты: 0.23 · 100 = 23%.
    Ответ: 23%.
    Формула для определения насколько число x больше числа y: (x — y) · 100 / x.
  5. Сколько будет, если прибавить 12% к числу 20?
    Определяем 1% от числа 20: 20 / 100 = 0.2.
    Рассчитываем 12%: 0.2 · 12 = 2,4.
    Добавляем полученное значение: 20 + 2.4 = 22.4.
    Ответ: 22.4.
    Формула для прибавления x% к числу y: x · y / 100 + y.
  6. Сколько будет, если вычесть 44% из числа 78?
    Определяем 1% от числа 78: 78 / 100 = 0.78.
    Рассчитываем 44%: 0.78 · 44 = 34.32.
    Вычитаем полученное значение: 78 — 34.32 = 43.68.
    Ответ: 43.68.
    Формула для вычитания x% из числа y: y — x · y / 100.

Примеры школьных заданий

Из запланированной дистанции в 32 км Том пробежал только 76%. Сколько километров пробежал мальчик?
Решение: для вычислений подходит первый калькулятор. В первую ячейку вставляем 76, во вторую — 32.
Получаем: Том пробежал 24.32 км.

Фермер Купер собрал с поля 500 кг кукурузы. 160 кг из этой массы оказалось неспелой. Сколько процентов от общего числа составила неспелая кукуруза?
Решение: для расчёта подходит второй калькулятор. В первое окошко записываем число 160, во второе — 500.
Получаем: 32% кукурузы оказалось неспелой.

Майкл прочитал своей подруге на ночь 112 страниц, что составляет 32% всей книги. Сколько страниц в книге?
Решение: используем для расчёта третий калькулятор. Вставляем в первую ячейку значение 112, а во вторую — 32.
Получаем: в книге 350 страниц.

Длина маршрута, по которому ходил автобус №42, составляла 48 километров. После добавления трёх дополнительных остановок расстояние от начальной до конечной станции изменилось до 78 километров. На сколько процентов изменилась длина маршрута?
Решение: используем для вычисления четвёртый калькулятор. В первую ячейку вбиваем число 78, во вторую — 48.
Получаем: длина маршрута выросла на 62.5%.

Братство металла и макулатуры в мае сдало на лом 320 кг цветного металла, а в июне на 30% больше. Сколько металла сдали ребята из братства в июне?
Решение: для расчёта будем использовать пятый калькулятор. В первую ячейку вставляем число 30, а во второе число 320.
Получаем: в июне братство сдало 416 кг металла.

Энди прорыл во вторник 3 метра туннеля, а в среду в связи с отъездом друга в Ирландию — на 22% меньше. Сколько метров туннеля прорыл Энди в среду?
Решение: в данном случае подходит шестой калькулятор. В первую ячейку вставляем 22, во вторую — 3.
Получаем: в среду мальчик прорыл 2.34 метра туннеля.

Как считать проценты на обычном калькуляторе

Найти процент от числа возможно и на самом обычном калькуляторе. Для этого необходимо найти кнопку проценты — %. Давайте вычислим 24% от числа 398:

  1. Вводим число 398;
  2. Нажимаем кнопку умножения (X);
  3. Вводим число 24;
  4. Нажимаем кнопку процента (%).

Вычислительное устройство покажет ответ: 95.52.

Проценты
— удобная относительная мера, позволяющая оперировать с числами в привычном для человека формате не зависимо от размера самих чисел. Это своего рода масштаб, к которому можно привести любое число. Один процент — это одна сотая доля. Само слово процент
происходит от латинского «pro centum», что означает «сотая доля».

Проценты незаменимы в страховании, финансовой сфере, в экономических расчетах. В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

1. Формула расчета доли в процентном отношении.

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

В финансовых расчетах часто пишут

P = A 1 / A 2 * 100%.

Пример.
Какую долю в процентном отношении составляет 10 от 200

P = 10 / 200 * 100 = 5 (процентов).

2. Формула расчета процента от числа.

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

Пример.
Банковский кредит 10 000 рублей под 5 процентов. Сумма процентов составит.

P = 10000 * 5 / 100 = 500.

3. Формула увеличения числа на заданный процент. Сумма с НДС.

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).

Пример 1.
Банковский кредит 10 000 рублей под 5 процентов. Общая сумма долга составит.

A 2 = 10000 * (1 + 5 / 100) = 10000 * 1.05 = 10500.

Пример 2.
Сумма без НДС равна 1000 рублей, НДС 18 процентов.
Сумма с НДС составляет:

A 2 = 1000 * (1 + 18 / 100) = 1000 * 1.18 = 1180.

style=»center»>

4. Формула уменьшения числа на заданный процент.

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 — A 1 * P / 100.

A 2 = A 1 * (1 — P / 100).

Пример.
Денежная сумма к выдаче за минусом подоходного налога (13 процентов).
Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет:

A 2 = 10000 * (1 — 13 / 100) = 10000 * 0.87 = 8700.

5. Формула вычисления исходной суммы. Сумма без НДС.

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС.

Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

Тогда

A 2 = A 1 / (1 + p).

Пример.
Сумма с НДС равна 1180 рублей, НДС 18 процентов.
Стоимость без НДС составляет:

A 2 = 1180 / (1 + 0.18) = 1000.

style=»center»>

6. Расчет процентов на банковский депозит. Формула расчета простых процентов.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где:
S — сумма банковского депозита с процентами,
Sp — сумма процентов (доход),
K — первоначальная сумма (капитал),

d — количество дней начисления процентов по привлеченному вкладу,
D — количество дней в календарном году (365 или 366).

Пример 1.
Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов.

S = 100000 + 100000*20*365/365/100 = 120000
Sp = 100000 * 20*365/365/100 = 20000

Пример 2.
Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов.

S = 100000 + 100000*20*30/365/100 = 101643.84
Sp = 100000 * 20*30/365/100 = 1643.84

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * (1 + P*d/D/100) N

Где:

P — годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S — K = K * (1 + P*d/D/100) N — K

Sp = K * ((1 + P*d/D/100) N — 1)

Пример 1.
Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней.

S = 100000 * (1 + 20*30/365/100) 3 = 105 013.02
Sp = 100000 * ((1 + 20*30/365/100) N — 1) = 5 013.02

style=»center»>

Пример 2.
Проверим формулу начисления сложных процентов для случая из предыдущего примера.

Разобьем срок депозита на 3 периода и рассчитаем начисление процентов для каждого периода, использую формулу простых процентов.

S 1 = 100000 + 100000*20*30/365/100 = 101643.84
Sp 1 = 100000 * 20*30/365/100 = 1643.84

S 2 = 101643.84 + 101643.84*20*30/365/100 = 103314.70
Sp 2 = 101643.84 * 20*30/365/100 = 1670.86

S 3 = 103314.70 + 103314.70*20*30/365/100 = 105013.02
Sp 3 = 103314.70 * 20*30/365/100 = 1698.32

Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты)

Sp = Sp 1 + Sp 2 + Sp 3 = 5013.02

Таким образом, формула вычисления сложных процентов верна.

8. Еще одна формула сложных процентов.

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

S = K * (1 + P/100) N

Где:
S — сумма депозита с процентами,
К — сумма депозита (капитал),
P — процентная ставка,
N — число периодов начисления процентов.

Пример.
Принят депозит в сумме 100 тыс. рублей сроком на 3 месяца с ежемесячным начислением процентов по ставке 1.5 процента в месяц.

S = 100000 * (1 + 1.5/100) 3 = 104 567.84
Sp = 100000 * ((1 + 1.5/100) 3 — 1) = 4 567.84

style=»center»>

Может пригодиться не только ученику средней школы. В обыденной жизни этот навык необходим для того, чтобы высчитать кредитную оплату, подсчитать и проверить, верно ли бухгалтера рассчитали вам величину налогообложения при получении заработной платы. А многим сотрудникам самых различных фирм и предприятий это умение просто необходимо для работы.

Что же это такое — процент? Из школьной программы каждый помнит, что процентом в мире принято считать сотую часть от чего-либо. То есть, говоря иначе, выражение «3 процента» следует понимать как 3 сотых от какого-либо числа. Для краткости записи люди приняли обозначение слова «процент» значком «%».

И со школьной скамьи все мы знаем, как посчитать процент от делят на сто, находя величину одного процента, а затем полученное частное умножают на число, обозначающее количество процентов, которые нужно найти.

Например, надо узнать, чему равно 28% от 500. Ход рассуждений должен быть таков:

  1. Находим размер 1% от 500 делением.
  1. Находим заданное число умножением полученного частного от деления на 100.

То есть, 28% от 500 — это 28/100 от 500. По-другому можно так записать это действие:

500 Х 28/100 = 140.

Так от числа не всегда бывает легко в уме, а ручка и бумага под рукой не везде, то сегодня очень многие пользуются калькуляторами.

Для вычисления можно воспользоваться описанным способом: заданное число разделить на сто и умножить на необходимое количество процентов.

Есть более быстрая возможность подсчёта:

  1. В калькулятор вводится заданное число. В нашем случае — 500.
  2. Далее нажимается клавиша «умножить».
  3. Затем набираем число искомых процентов — для нашего варианта это 28.
  4. Вместо равенства выбираем на калькуляторе знак %.
  5. Получаем результат — это 140 в нашем примере.
  1. В ячейке, которая отображает рассчитанный процент, вводится знак равенства «=».
  2. Далее записывается заданное число, от которого нужно искать процент, либо «адрес» той ячейки, где это число уже введено. Мы в нашем примере введём число 500.
  3. Третьим шагом будет выставление знака «умножить» или «*».
  4. Теперь следует записать то число, которое отражает количество искомых процентов. Для нас это 28.
  5. Предпоследним действием будет введение знака «процент», который имеет вид «%».
  6. Для получения результата осталось только нажать на клавиатуре кнопку «Enter». Результат — 140 — не замедлит появиться на мониторе.

Перед началом работы в программе «Excel» следует левой кнопкой мышки выставить в ячейках таблицы соответствующий формат или воспользоваться функцией «меню»: «формат — ячейки — число — процентный».

Например, нам даны числа 140 и 500. Вопрос поставлен таким образом: сколько процентов составляет 140 от 500?

  1. Сначала найдём, чему равен один процент от 500. То есть, идём по старой схеме и делим 500 на 100. Получаем 5.
  2. Теперь осталось узнать, сколько таких процентов содержит заданное число 140. Для этого 140 нужно поделить на 5. Получаем те же самые 28 процентов!
  3. В одну формулу это вычисление можно записать следующим образом:

140: (500: 100) = 140: 500/100 = 140: 500 Х 100 = 28.

То есть, число 140 от 500 составляет 28 процентов.

А для того, чтобы узнать, сколько процентов одно число составляет от другого, нам следует меньшее число разделить на большее и частное умножить на 100.

Эти навыки чрезвычайно важны предпринимателю, который занимается торговлей. При установлении цен на товар обычно требуется умение, как посчитать процент от числа, так как при помощи этого действия делается необходимая «накрутка» на товар. Удобнее всего делать на весь ассортимент одинаковую накрутку в процентах, например, 15%.

Но для исчисления чистого дохода нужно и другое умение. Например, дневная выручка в ларьке составила 3450 рублей. Каков же чистый доход от проданных товаров? Некоторые начинающие предприниматели наивно высчитывают 15% от валовой выручки, и совершают грубейшую ошибку! Изъяв из оборота полученную таким неверным способом «накрутку», потом они сидят и ломают голову, откуда появилась недостача.

А всё очень просто. После накрутки в товаре стало присутствовать не 100% от стоимости, а 100% + 15% = 115%. Поэтому чтобы найти сумму вырученной добавочной стоимости, 15% высчитывают так:

  1. Находят 1% от выручки, разделив её не на 100, а на 115. То есть, в нашем случае
  1. А теперь уже можно искать добавочную стоимость, которую можно храбро извлекать из оборота.

Эти цифры взяты «с потолка», поэтому не стоит серьёзно относиться к этим данным. А вот сами способы вычисления заслуживают внимания, в них нет ошибок.

Процент — сотая доля числа. Это математическое понятие широко применяется в повседневной жизни: в процентах указаны статистические данные, состав продуктов питания и различных материалов, а также ставки по кредитам и депозитам.

Проценты позволяют сравнивать между собой части целого, значительно упрощая расчеты Вычисление процентов можно выполнить в уме или на бумаге, используя формулу, а также с помощью калькулятора или программы Excel.

Быстрая навигация по статье

  • Число, от которого нужно найти процент, поделить на 100;
  • Полученный результат умножить на искомый процент.

Для удобства число можно умножать на проценты, записанные в виде десятичной дроби (поделить их на сто). Например, чтобы найти 20% от 50, необходимо 50/100*20=10 или 50*0,2=10.

Вычисление на калькуляторе

Для подсчета процентов можно использовать калькулятор. Для этого потребуется:

  • Ввести нужное число;
  • Нажать кнопку «Умножить»;
  • Указать количество процентов;
  • Нажать клавишу «%».

Если обычного калькулятора нет в наличии, можно воспользоваться программой «Калькулятор» в операционной системе Windows (зайти в «Пуск», «Стандартные программы», «Калькулятор»). Существует также множество онлайн-калькуляторов, для использования которых необходим доступ к интернету.

Excel

Расчет процентов можно выполнять в программе Microsoft Office Excel. Для этого необходимо:

  • Открыть программу;
  • В любую ячейку ввести число, от которого нужно найти процент;
  • В ячейку, в которой будет отображаться результат, поставить знак «=»;
  • Выделить ячейку с указанным числом, ввести знак «*», ввести проценты, поставить значок «%» и нажать кнопку “Enter”;
  • Во второй ячейке отобразится результат вычислений.

Вводить числа можно в любые ячейки файла (на одном листе или на разных).

Процентное соотношение

Существуют расчеты, позволяющие определить, сколько процентов составляет одно число от другого. Для такого расчета потребуется:

  • Число, процентное соотношение которого нужно найти, необходимо умножить на 100;
  • Результат поделить на число, от которого вычисляется процент.

Например, для того чтобы найти сколько процентов составляет 50 от 200, нужно 50*100/200=25 (50 составляет 25 процентов от 200).

Нахождение числа по проценту

  • Заданное число разделить на процент;
  • Полученный результат умножить на 100.

Например, для нахождения числа, 25% от которого составляет 50, потребуется 50/25*100=200.

Поделитесь этой статьёй
с друзьями в соц. сетях:

Частное двух чисел называют отношением этих чисел.

Рассмотрим на примерах как находить отношение двух чисел.

4
и 20

Число 4
составляет 20%
от числа 20
. Для вычисления разделим 4
на 20
и умножим на 100
, получим 4 ÷ 20 × 100 = 20%

Число 20
составляет 500%
от числа 4
. Для вычисления разделим 20
на 4
и умножим на 100
, получим 20 ÷ 4 × 100 = 500%

Из числа 4
получим 20
увеличив на 400%
. Для вычисления разделим 20
на 4
, умножим на 100
и отнимем 100%
, получим 20 ÷ 4 × 100 — 100 = 400%

Из числа 20
получим 4
уменьшив число на 80%
. Для вычисления разделим 4
на 20
, умножим на 100
и отнимем 100%
, получим 4 ÷ 20 × 100 — 100 = -80%
. Если в результате получается отрицательное значение, то число надо уменьшать, если положительно то увеличивать.

Найдем отношение двух вещественных чисел.

Пример Найдем отношение чисел 0.3
и 0.6

Число 0.3
составляет 50%
от числа 0.6
. Для вычисления разделим 0.3
на 0.6
и умножим на 100
, получим 0.3 ÷ 0.6 × 100 = 50%

Число 0.6
составляет 200%
от числа 0.3
.

Как высчитать процент от суммы?

Для вычисления разделим 0.6
на 0.3
и умножим на 100
, получим 0.6 ÷ 0.3 × 100 = 200%

Из числа 0.3
получим 0.6
увеличив на 100%
. Для вычисления разделим 0.6
на 0.3
, умножим на 100
и отнимем 100
, получим 0.6 ÷ 0.3 × 100 — 100 = 100%

Из числа 0.6
получим 0.3
уменьшив число на 50%
. Для вычисления разделим 0.3
на 0.6
, умножим на 100
и отнимем 100
, получим 0.3 ÷ 0.6 × 100 — 100 = -50%
.

Как посчитать (высчитать) процент от суммы?

Один процент
— это одна сотая доля. Само слово процент
происходит от латинского «pro centum», что означает «сотая доля».

1.

Калькулятор процентов

Формула расчета доли в процентном отношении.

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

Скачайте удобный
style=»color:red»> калькулятор — любые вычисления,
проценты, расчет по формулам, запись и печать результатов

2. Формула расчета процента от числа.

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

3. Формула увеличения числа на заданный процент. Сумма с НДС.

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).

Примечание. В нашем калькуляторе ClasCalc есть специальная операция «прибавления процента», которая обозначается +%
.

4. Формула уменьшения числа на заданный процент.

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 — A 1 * P / 100.

A 2 = A 1 * (1 — P / 100).

5. Формула вычисления исходной суммы. Сумма без НДС.

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС. Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

A 2 = A 1 / (1 + p).

См. Формулы расчета НДС, сумма с НДС, сумма без НДС, выделение НДС

6. Расчет процентов на банковский депозит. Формула расчета простых процентов.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где:
S — сумма банковского депозита с процентами,
Sp — сумма процентов (доход),
K — первоначальная сумма (капитал),
d — количество дней начисления процентов по привлеченному вкладу,
D — количество дней в календарном году (365 или 366).

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * (1 + P*d/D/100) N

Где:

P — годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S — K = K * (1 + P*d/D/100) N — K

Sp = K * ((1 + P*d/D/100) N — 1)

Чтобы определить, что выгоднее — вклад под больший процент начисляемый по формуле простых процентов или вклад под меньший процент, но начисляемый по формуле сложных процентов, см.

Формулы расчета сложных процентов и выбор вклада.

8. Еще одна формула сложных процентов.

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

S = K * (1 + P/100) N

Где:
S — сумма депозита с процентами,
К — сумма депозита (капитал),
P — процентная ставка,
N — число периодов начисления процентов.

Подробнее и с примерами расчета процентов по формулам простых и сложных процентов.

Например, вычислить, сколько процентов составляет число 52 от числа 400.

По правилу: 52: 400 * 100 — 13 (%).

Обычно такие отношения встречаются в задачах, когда величины заданы, а нужно определить, на сколько процентов вторая величина больше или меньше первой (в вопросе задачи: на сколько процентов перевыполнили задание; на сколько процентов выполнили работу; на сколько процентов снизилась или повысилась цена и т.

Как найти процент от числа

Решения задач на процентное отношение двух чисел редко предполагают только одно действие. Чаше решение таких задач состоит из 2-3 действий.

Примеры.

1. Завод должен был за месяц изготовить 1 200 изделий, а изготовил 2 300 изделий. На сколько процентов завод перевыполнил план?

1-й вариант

Решение:
1 200 изделий — это план завода, или 100% плана.
1) Сколько изделий изготовил завод сверх плана?
2 300 — 1 200 = 1 100 (изд.)

2) Сколько процентов от плана составят сверхплановые изделия?
1 100 от 1 200 => 1 100: 1 200 * 100 = 91,7 (%).

2-й вариант

Решение:
1) Сколько процентов составляет фактический выпуск изделий по сравнению с плановым?
2 300 от 1 200 => 2 300: 1 200 * 100 = 191,7 (%).

2) На сколько процентов перевыполнен план?
191,7 — 100 = 91,7 (%)
Ответ: на 91,7%.

2. Урожайность пшеницы в хозяйстве за предыдущий год составила 42 ц/га и была занесена в план следующего года. В следующем году урожайность снизилась до 39 ц/га. На сколько процентов был выполнен план следующего года?

1-й вариант

Решение:

42 ц/га — это план хозяйства на этот год, или 100% плана.

1) На сколько снизилась урожайность по сравнению
с планом?
42 — 39 = 3 (ц/га)

2) На сколько, процентов план не довыполнен?
3 от 42 => 3: 42 * 100 = 7.1 (%).

3) Насколько процентов выполнен план этого года?

100 — 7,1 = 92,9 (%)

2-й вариант

Решение:
1) Сколько процентов составляет урожайность этого гола по сравнению с планом?
39 от 42 39: 42 100 — 92,9 (%).
Ответ: 92,9%.

Анонимный Число А на 56% меньше числа В, которое в 2,2 раза меньше числа С. Какой процент числа С относительно числа А?
NMitra A = B — 0,56 ⋅ B = B ⋅ (1 — 0,56) = 0,44 ⋅ B
B = A: 0,44
С = 2,2 ⋅ B = 2,2 ⋅ A: 0,44 = 5 ⋅ A
C в 5 раз больше A
C на 400% больше A
Анонимный Помогите. В 2001 выручка возросла по сравнению с 2000 на 2 процента, хотя планировали в 2 раза. На сколько процентов недовыполнен план?
NMitra А — 2000 год
Б — 2001 год
Б = A + 0,02A = A ⋅ (1 + 0,02) = 1,02 ⋅ A
Б = 2 ⋅ А (план)
2 — 100%
1,02 — х%
х = 1,02 ⋅ 100: 2 = 51% (выполнен план)
100 — 51 = 49% (недовыполнен план)
Анонимный Помогите ответить на вопрос. Арбуз содержит 99% влажность, но после усушки (положить на солнышко на несколько дней) влажность его составляет 98%. На сколько % изменится ВЕС арбуза после усушки?
Если рассчитывать математическим путем, то получается, что у меня арбуз совсем усох.
Например: при весе в 20 кг вода составляет 99% массы, то есть сухой вес равен 1% = 0,2 кг.
Тут арбуз теряет жидкость, и состоит уже на 98%, следовательно, сухой вес равен 2%. Но сухой вес не может измениться из-за потери воды, поэтому он как и прежде равен 0,2 кг. 2%=0,2 => 100%=10 кг.
Анонимный Подскажите, пожалуйста, как вычислить сам процент в диапазоне 2-ух значений? Скажем, какой процент у числа 37 в диапазоне значений 22-63? Мне нужна формула для приложения, раньше решал такие задачи за пару минут, а сейчас мозг усох). Выручайте.
NMitra У меня так выходит:
процент = (число — z0) ⋅ 100: (z1-z0)
z0 — начальное значение диапазона
z1 — конечное значение диапазона
Например,
х = (37-22) ⋅ 100: (63-22) = 1500: 41 = 37%
Для примера ниже сходится

0 10 20 30 40 50 60 70 80 90 100
2 3 4 5 6 7 8 9 10 11 12

Анонимный a — текущая дата
b — начало срока
c — конец срока
(a-b) ⋅ 100: (c-b)
Анонимный Стол и стул стоят вместе 650 руб. После того как стол стал дешевле на 20%, а стул — дороже на 20%, они стали стоить вместе 568 руб. Найти начальную цену стола, нач. цену стула.
NMitra цена стола — х
цена стула — у
0,8x + 1,2y = 568
0,8x = 568 — 1,2y
x = (568 — 1,2y) : 0,8 = 710 — 1,5y
x + y = 650
y = 650 — x
y = 650 — (710 — 1,5y) = -60 + 1,5y
y — 1,5y = -60
0,5y = 60
y = 120
x = 710 — 1,5 ⋅ 120 = 530
Анонимный Вопрос. На автостоянке стояли легковые и грузовые машины. Легковых машин больше на 1,15 раза. На сколько процентов легковых машин больше, чем грузовых?
NMitra На 15%.
Кеша Помогите, пожалуйста. Уже голова опухла… Привезли товар на 70 000. Товары разные. 23 вида. Конечно, закупочные цены у них разные от 210 руб. до 900 руб. Всего расход на транспорт и т. п. = 28 000 руб. Как мне посчитать теперь себестоимость на эти разные товары? Количество 67 шт. И хочу им 50 процентов добавить и продавать. Как мне тогда вычислить на каждого вида товара накрутку 50%? Заранее благодарю. С уважением, КЕША.
NMitra Предположим, привезли 4-ре товара (35 руб, 16 руб, 18 руб, 1 руб) на общую сумму 70 руб. На транспортные расходы и т. п. потратили 20 руб.
Процент каждого товара в общей сумме
70 руб — 100%
35 руб — х%
х = 35 ⋅ 100: 70 = 50%
Себестоимость
35 руб + 10 руб = 45 руб

35 50% 10 45
16 23% 4,6 20,6
18 26% 5,2 23,2
1 1% 0,2 1,2
70 100% 20 90

Накрутка 50% на себестоимость
45 руб — 100%
х руб — 150%
х = 45 ⋅ 150: 100 = 45 ⋅ 1,5 = 67,5 руб

35 50% 10 45 67,5
16 23% 4,6 20,6 30,9
18 26% 5,2 23,2 34,8
1 1% 0,2 1,2 1,8
70 100% 20 90 135

Tigran Hovhannisyan Кеша, есть два способа. Первый способ описан в верхнем комментарии. Второй способ — берёте сумму транспорта и делите на количественную сумму товаров (в Вашем случае 67), то есть
28 000: 67 = 417,91 рублей на одно изделие
Вот 418 (417.91) прибавьте на себестоимость товара (тут есть много нюансов, которые можно учесть, но в общем-то всё выглядит так).
Анонимный А мне помогите, пожалуйста, сосчитать. Один человек дал на общее развитие дел 1 тыс. евро, другой — 3600. За несколько месяцев работы сумма получилась 14500. Как поделить??? Кому сколько))
Я не математик, объяснила просто.
Сумма от первоначальной выросла в три раза с хвостиком. Это легко считать: 14 500 делим на 4600, получаем 3,152.
Вот это и есть число на которое надо умножать вложенную сумму:
1 тыс — 3 152
3600 умножаем на 3,152 = 11 347
Всё просто) Без всяких формул.
NMitra Верно мыслите!
100% — 1000 + 3600
х% — 1000
х = 1000 ⋅ 100: 4600 = 21,73913% (доля в процентах в первоначальном капитале того, кто дал 1000€)
100% — 14500
21,73913% — х
х = 14500 ⋅ 21,73913: 100 = 3152,17€ (тот, кто дал 1000€)
14500 — 3152,17 = 11347,83€ (тот, кто дал 3600€)